L0-regularized learning for high-dimensional additive hazards regression
Year of publication: |
2022
|
---|---|
Authors: | Zheng, Zemin ; Zhang, Jie ; Li, Yang |
Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 34.2022, 5, p. 2762-2775
|
Subject: | global and local optimizers | high-dimensional features | L0-regularized learning | model selection consistency | primal dual active sets | survival data analysis | Theorie | Theory | Lernprozess | Learning process | Regressionsanalyse | Regression analysis | Mikroökonometrie | Microeconometrics |
-
Marginale Regressionsmodelle mit variierenden Koeffizienten für kategoriale Zielvariablen
Gieger, Christian, (1998)
-
Joint censoring of regressors and outcomes : survey nonresponse and attrition
Horowitz, Joel, (1994)
-
On the proper use of ordinal variables in microeconometric models
Kukuk, Martin, (1998)
- More ...
-
Sequential scaled sparse factor regression
Zheng, Zemin, (2022)
-
Ownership and nonperforming loans : evidence from Taiwan's banks
Hu, Jin-li, (2004)
-
Robust parallel pursuit for large-scale association network learning
Li, Wenhui, (2025)
- More ...