Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions
We study the problem of parameter estimation for generalized Ornstein-Uhlenbeck processes driven by [alpha]-stable noises, observed at discrete time instants. Least squares method is used to obtain an asymptotically consistent estimator. The strong consistency and the rate of convergence of the estimator have been studied. The estimator has a higher order of convergence in the general stable, non-Gaussian case than in the classical Gaussian case.
Year of publication: |
2009
|
---|---|
Authors: | Hu, Yaozhong ; Long, Hongwei |
Published in: |
Stochastic Processes and their Applications. - Elsevier, ISSN 0304-4149. - Vol. 119.2009, 8, p. 2465-2480
|
Publisher: |
Elsevier |
Keywords: | Asymptotic distribution of LSE Consistency of LSE Discrete observation Least squares method Generalized Ornstein-Uhlenbeck processes Parameter estimation [alpha]-stable processes |
Saved in:
Saved in favorites
Similar items by person
-
A jump model for fads in asset prices under asymmetric information
Buckley, Winston, (2014)
-
A discontinuous mispricing model under asymmetric information
Buckley, Winston S., (2015)
-
Market-reaction-adjusted optimal central bank intervention policy in a forex market with jumps
Perera, Sandun, (2018)
- More ...