Lectures on Mathematical Theory of Extremum Problems
by Igor Vladimirovich Girsanov; edited by B. T. Poljak
Editor’s preface -- Lecture 1. Introduction -- Lecture 2. Topological linear spaces, convex sets, weak topologies -- Lecture 3. Hahn-Banach Theorem -- Lecture 4. Supporting hyperplanes and extremal points -- Lecture 5. Cones, dual cones -- Lecture 6. Necessary extremum conditions (Euler-Lagrange equation) -- Lecture 7. Directions of decrease -- Lecture 8. Feasible directions -- Lecture 9. Tangent directions -- Lecture 10. Calculation of dual cones -- Lecture 11. Lagrange multipliers and the Kuhn-Tucker Theorem -- Lecture 12, Problem of optimal control. Local maximum principle -- Lecture 13. Problem of optimal control. Maximum principle -- Lecture 14. Problem of optimal control. Constraints on phase coordinates, minimax problem -- Lecture 15. Sufficient extremum conditions -- Lecture 16. Sufficient extremum conditions. Examples -- Suggestions for further reading -- References.
Year of publication: |
1972
|
---|---|
Authors: | Girsanov, Igor Vladimirovič |
Other Persons: | Poljak, B. T. (contributor) |
Publisher: |
Berlin : Springer |
Subject: | Theorie | Theory | Finanzmathematik | Mathematical finance | Mathematik | Mathematics | Mathematische Optimierung | Mathematical programming |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Giorgi, Giorgio, (1999)
-
Introduction to mathematical economics : matrix algebra and linear economic models
Puckett, Richard H., (1971)
-
Mathematical. - 1987. - XIV S., S. 476 - 873
Yadav, Chiranji Singh,
- More ...