Leveraging random forest in micro-enterprises credit risk modelling for accuracy and interpretability
Year of publication: |
2022
|
---|---|
Authors: | Uddin, Mohammad S. ; Chi, Guotai ; Al Janabi, Mazin A. M. ; Habib, Tabassum |
Published in: |
International journal of finance & economics : IJFE. - Chichester [u.a.] : Wiley, ISSN 1099-1158, ZDB-ID 1493204-0. - Vol. 27.2022, 3, p. 3713-3729
|
Subject: | accuracy | high-dimensional data | interpretability | micro-enterprise | Random Forest | relative variable importance | KMU | SME | Kreditrisiko | Credit risk | Forstwirtschaft | Forestry | Theorie | Theory |
-
The macroeconomy as a random forest
Goulet Coulombe, Philippe, (2024)
-
Tang, Lingxiao, (2019)
-
Default patterns in seven EU countries : a random forest approach
Behr, Andreas, (2017)
- More ...
-
Modeling credit risk with a multi-stage hybrid model : an alternative statistical approach
Uddin, Mohammad S., (2022)
-
Feature selection in credit risk modeling : an international evidence
Zhou, Ying, (2021)
-
An alternative statistical framework for credit default prediction
Uddin, Mohammad S., (2020)
- More ...