Local Linear Estimation in Partly Linear Models
Let (X, B, Y) denote a random vector such thatBandYare real-valued, andX[set membership, variant]2. Local linear estimates are used in the partial regression method for estimating the regression functionE(Y|X, B)=[alpha]B+m(X), where[alpha]is an unknown parameter, andm(·) is a smooth function. Under appropriate conditions, asymptotic distributions of estimates of[alpha]andm(·) are established. Moreover, it is shown that these estimates achieve the best possible rates of convergence in the indicated semi-parametric problems.
Year of publication: |
1997
|
---|---|
Authors: | Hamilton, Scott A. ; Truong, Young K. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 60.1997, 1, p. 1-19
|
Publisher: |
Elsevier |
Keywords: | partial linear models semi-parametric models design-adaptive nonparametric regression local polynomial estimator optimal rate of convergence |
Saved in:
Saved in favorites
Similar items by person
-
Errors-in-variables and the Box-Cox transformation
Edwards, Lloyd J., (1995)
-
Nonparametric time series regression
Truong, Young K., (1994)
-
Kooperberg, Charles, (1995)
- More ...