Loss-based Bayesian sequential prediction of Value-at-Risk with a long-memory and non-linear realized volatility model
| Year of publication: |
2025
|
|---|---|
| Authors: | Peiris, Rangika ; Minh-Ngoc Tran ; Wang, Chao ; Gerlach, Richard |
| Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 23.2025, 4, Art.-No. nbaf017, p. 1-26
|
| Subject: | HAR model | recurrent neural network | quantile score | sequential Monte Carlo | generalized Bayesian method | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Monte-Carlo-Simulation | Monte Carlo simulation | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Zeitreihenanalyse | Time series analysis | Risikomaß | Risk measure | Schätztheorie | Estimation theory |
-
Accurate methods for approximate Bayesian Computation Filtering
Calvet, Laurent E., (2015)
-
Bayesian estimation of stochastic tail index from high-frequency financial data
Doğan, Osman, (2021)
-
Tail risk forecasting of realized volatility CAViaR models
Chen, Cathy W. S., (2023)
- More ...
-
Semi-parametric financial risk forecasting incorporating multiple realized measures
Peiris, Rangika, (2024)
-
A long short-term memory enhanced realized conditional heteroskedasticity model
Liu, Chen, (2025)
-
A dynamic leverage stochastic volatility model
Nguyen, Hoang, (2021)
- More ...