LRMoE : An R Package for Flexible Actuarial Loss Modelling Using Mixture of Experts Regression Model
Year of publication: |
[2021]
|
---|---|
Authors: | Tseung, Spark C. ; Badescu, Andrei ; Fung, Tsz Chai ; Lin, X. Sheldon |
Publisher: |
[S.l.] : SSRN |
Subject: | Versicherungsmathematik | Actuarial mathematics | Regressionsanalyse | Regression analysis | Risikomodell | Risk model | Schätztheorie | Estimation theory | Experten | Experts |
Extent: | 1 Online-Ressource (28 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 30, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3740215 [DOI] |
Classification: | C8 - Data Collection and Data Estimation Methodology; Computer Programs |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The regression calculus of economic convergence and the contribution of the institutional factor
Iancu, Aurel, (2010)
-
Hoover, Kevin D., (2008)
-
Sequential regression : a neodescriptive approach to multicollinearity
Fickel, Norman, (2001)
- More ...
-
Improving risk classification and ratemaking using mixture-of-experts models with random effects
Tseung, Spark C., (2023)
-
LRMoE.jl : a software package for insurance loss modelling using mixture of experts regression model
Tseung, Spark C., (2021)
-
Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models
Fung, Tsz Chai, (2021)
- More ...