Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors : state of the art survey
Year of publication: |
2022
|
---|---|
Authors: | Drakaki, Maria ; Karnavas, Yannis L. ; Tziafettas, Ioannis A. ; Linardos, Vasilis ; Tzionas, Panagiotis |
Published in: |
Journal of industrial engineering and management : JIEM. - Terrassa : Universitat Politècnica de Catalunya (UPC), ISSN 2013-0953, ZDB-ID 2495074-9. - Vol. 15.2022, 1, p. 31-57
|
Subject: | deep learning | fault detection | fault diagnosis | induction motor | Industry 4.0 | machine learning | predictive maintenance | Künstliche Intelligenz | Artificial intelligence | Instandhaltung | Maintenance policy | Kfz-Industrie | Automotive industry | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Lernen | Learning |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3926/jiem.3597 [DOI] hdl:10419/261786 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting machine failures using machine learning and deep learning algorithms
Yadav, Devendra K., (2024)
-
Drakaki, Maria, (2022)
-
Predictive asset availability optimization for underground trucks and loaders in the mining industry
Patil, Sunil D., (2021)
- More ...
-
Drakaki, Maria, (2022)
-
Drakaki, Maria, (2019)
-
Koligiannis, Georgios, (2024)
- More ...