Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors : state of the art survey
Year of publication: |
2022
|
---|---|
Authors: | Drakaki, Maria ; Karnavas, Yannis L. ; Tziafettas, Ioannis A. ; Linardos, Vasilis ; Tzionas, Panagiotis |
Subject: | deep learning | fault detection | fault diagnosis | induction motor | Industry 4.0 | machine learning | predictive maintenance | Künstliche Intelligenz | Artificial intelligence | Instandhaltung | Maintenance policy | Kfz-Industrie | Automotive industry | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Lernen | Learning |
-
Predicting machine failures using machine learning and deep learning algorithms
Yadav, Devendra K., (2024)
-
Drakaki, Maria, (2022)
-
Predictive asset availability optimization for underground trucks and loaders in the mining industry
Patil, Sunil D., (2021)
- More ...
-
Drakaki, Maria, (2022)
-
Drakaki, Maria, (2019)
-
Koligiannis, Georgios, (2024)
- More ...