Machine learning applications to land and structure valuation
Year of publication: |
2022
|
---|---|
Authors: | Mayer, Michael ; Bourassa, Steven C. ; Hoesli, Martin ; Scognamiglio, Donato |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 5, Art.-No. 193, p. 1-24
|
Subject: | deep learning | gradient boosting | hedonic modeling | interpretability | land and structure valuation | machine learning | structured additive regression | transparency | Künstliche Intelligenz | Artificial intelligence | Hedonischer Preisindex | Hedonic price index | Theorie | Theory | Regressionsanalyse | Regression analysis |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15050193 [DOI] hdl:10419/274715 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Structured additive regression and tree boosting
Mayer, Michael, (2021)
-
Machine learning applications to land and structure valuation
Mayer, Michael, (2022)
-
Estimation and updating methods for hedonic valuation
Mayer, Michael, (2018)
- More ...
-
Machine learning applications to land and structure valuation
Mayer, Michael, (2022)
-
Estimation and updating methods for hedonic valuation
Mayer, Michael, (2019)
-
Estimation and updating methods for hedonic valuation
Mayer, Michael, (2018)
- More ...