Machine learning-assisted efficient demand forecasting using endogenous and exogenous indicators for the textile industry
| Year of publication: |
2024
|
|---|---|
| Authors: | Yasir, Muhammad ; Ansari, Yasmeen ; Latif, Khalid ; Maqsood, Haider ; Habib, Adnan ; Moon, Jihoon ; Rho, Seungmin |
| Published in: |
International journal of logistics : research and applications. - London [u.a.] : Taylor & Francis, ISSN 1469-848X, ZDB-ID 2020197-7. - Vol. 27.2024, 12, p. 2867-2886
|
| Subject: | Demand forecasting | endogenous and exogenous indicators | linear regression | long shor-term memory | machine learning | textile industries | Textilindustrie | Textile industry | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Nachfrage | Demand |
-
Demand forecasting new fashion products : a review paper
Anitha S., (2025)
-
Demand forecasting for fashion products : a systematic review
Swaminathan, Kritika, (2024)
-
Do global forecasting models require frequent retraining?
Zanotti, Marco, (2025)
- More ...
-
Lestari, Fitra, (2023)
-
Time-varying herding spillover for emerging countries : evidence from BRIC countries and Turkey
Yasir, Muhammad, (2023)
-
Yasir, Muhammad, (2021)
- More ...