Machine learning at the service of meta-heuristics for solving combinatorial optimization problems : a state-of-the-art
Year of publication: |
2022
|
---|---|
Authors: | Karimi-Mamaghan, Maryam ; Mohammadi, Mehrdad ; Meyer, Patrick ; Karimi-Mamaghan, Amir Mohammad ; Talbi, El-Ghazali |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 296.2022, 2 (16.1.), p. 393-422
|
Subject: | Combinatorial optimization problems | Machine learning | Meta-heuristics | State-of-the-art | Künstliche Intelligenz | Artificial intelligence | Scheduling-Verfahren | Scheduling problem | Heuristik | Heuristics | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm | Theorie | Theory |
-
Hyper-heuristic : a survey of the state of the art
Burke, Edmund K., (2013)
-
Lin, Lin, (2018)
-
Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems
Lagos, Felipe, (2024)
- More ...
-
Hub-and-spoke network design under congestion : a learning based metaheuristic
Karimi-Mamaghan, Maryam, (2020)
-
Karimi-Mamaghan, Maryam, (2020)
-
A queue-based aggregation approach for performance evaluation of a production system with an AMHS
Mohammadi, Mehrdad, (2020)
- More ...