The Use of Machine Learning for Bank Financial Stress Tests : Prepared for the 3rd Annual Marcus Evans Conference - Best Practices for Stress Testing in Financial Institutions, New York USA
Year of publication: |
[2022]
|
---|---|
Authors: | O'Keefe, John |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Stresstest | Stress test | USA | United States | Bank | New York | Risikomanagement | Risk management | Finanzsektor | Financial sector |
Extent: | 1 Online-Ressource (64 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 24, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4019533 [DOI] |
Classification: | G21 - Banks; Other Depository Institutions; Mortgages ; G32 - Financing Policy; Capital and Ownership Structure |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Schult, Alexander, (2024)
-
A Comprehensive Framework for Quantitative Stress Tests in Financial Institutions
Takano, Yasushi, (2013)
-
Climate stress test of the Hungarian banking system
Bokor, László, (2022)
- More ...
-
Understanding bank supervisors' risk assessments
O'Keefe, John, (2012)
-
The influence of examiners and auditors on loan-loss recognition
Dahl, Drew, (1998)
-
Understanding the experience of converted New England savings banks
Eccles, Jennifer L., (1995)
- More ...