Machine-learning-based semiparametric time series conditional variance : estimation and forecasting
Year of publication: |
2022
|
---|---|
Authors: | Dang, Justin ; Ullah, Aman |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 1, Art.-No. 38, p. 1-12
|
Subject: | conditional variance | nonparametric estimator | semiparametric models | forecasting | machine learning | kernel-regularized least squares | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Künstliche Intelligenz | Artificial intelligence |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15010038 [DOI] hdl:10419/258762 [Handle] |
Classification: | C01 - Econometrics ; C14 - Semiparametric and Nonparametric Methods ; C51 - Model Construction and Estimation ; C53 - Forecasting and Other Model Applications ; c58 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine-learning-based semiparametric time series conditional variance: Estimation and forecasting
Dang, Justin, (2022)
-
Matrix Box-Cox models for multivariate realized volatility
Weigand, Roland, (2014)
-
Jump variation estimation with noisy high frequency financial data via wavelets
Zhang, Xin, (2016)
- More ...
-
Machine-learning-based semiparametric time series conditional variance: Estimation and forecasting
Dang, Justin, (2022)
-
Generalized kernel regularized least squares estimator with parametric error covariance
Dang, Justin, (2023)
-
González-Rivera, Gloria, (2016)
- More ...