Machine learning for dynamic incentive problems
Year of publication: |
[2017]
|
---|---|
Authors: | Renner, Philipp ; Scheidegger, Simon |
Publisher: |
Lancester : Lancaster University Management School |
Subject: | Dynamic Contracts | Principal-Agent Model | Dynamic Programming | Machine Learning | Gaussian Processes | High-Performance Computing | Künstliche Intelligenz | Artificial intelligence | Prinzipal-Agent-Theorie | Agency theory | Dynamische Optimierung | Dynamic programming | Dynamische Wirtschaftstheorie | Economic dynamics |
-
Contractive dual methods for incentive problems
Messner, Matthias, (2012)
-
Deep learning for solving dynamic economic models.
Maliar, Lilia, (2021)
-
A dynamic principal-agent model with hidden information
Zhang, Hao, (2004)
- More ...
-
Monetary Policy with Persistent Supply Shocks
Nuño, Galo, (2024)
-
Monetary policy with persistent supply shocks
Nuño, Galo, (2024)
-
Machine Learning for Dynamic Incentive Problems
Renner, Philipp, (2020)
- More ...