Machine learning for quantitative finance : fast derivative pricing, hedging and fitting
Year of publication: |
2018
|
---|---|
Authors: | De Spiegeleer, Jan ; Madan, Dilip B. ; Reyners, Sofie ; Schoutens, Wim |
Published in: |
Quantitative finance. - Abingdon [u.a.] : Routledge, ISSN 1469-7688, ZDB-ID 2055458-8. - Vol. 18.2018, 10, p. 1635-1643
|
Subject: | Derivative pricing | Gaussian processes | Hedging | Machine learning | Volatility surface | Derivat | Derivative | Künstliche Intelligenz | Artificial intelligence | Optionspreistheorie | Option pricing theory | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Finanzmathematik | Mathematical finance |
-
Probabilistic machine learning for local volatility
Tegnér, Martin, (2021)
-
KrigHedge : Gaussian process surrogates for Delta hedging
Ludkovski, Mike, (2021)
-
The Art of Quantitative Finance Vol.2 : Volatilities, Stochastic Analysis and Valuation Tools
Larcher, Gerhard, (2023)
- More ...
-
Machine Learning for Quantitative Finance : Fast Derivative Pricing, Hedging and Fitting
De Spiegeleer, Jan, (2018)
-
ESG: a new dimension in portfolio allocation
De Spiegeleer, Jan, (2023)
-
ESG : A New Dimension in Portfolio Allocation
De Spiegeleer, Jan, (2020)
- More ...