Machine learning for US cross-industry return predictability under information uncertainty
Year of publication: |
2023
|
---|---|
Authors: | Awijen, Haithem ; Zaied, Younes Ben ; Ben Lahouel, Bechir ; Khlifi, Foued |
Published in: |
Research in international business and finance. - Amsterdam [u.a.] : Elsevier, ISSN 0275-5319, ZDB-ID 424514-3. - Vol. 64.2023, p. 1-13
|
Subject: | Industry-rotation portfolio | OLS post-LASSO | Post-selection inference | Predictive regression | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Regressionsanalyse | Regression analysis | Portfolio-Management | Portfolio selection | Schätzung | Estimation | USA | United States | Kleinste-Quadrate-Methode | Least squares method | Bayes-Statistik | Bayesian inference | Kapitalmarktrendite | Capital market returns |
-
Predicting returns and dividend growth : the role of non-Gaussian innovations
Kiss, Tamás, (2021)
-
Momentum of return predictability
Wang, Yudong, (2018)
-
Industry equi-correlation : a powerful predictor of stock returns
Wang, Yudong, (2020)
- More ...
-
Renewable energy deployment in the MENA region : does innovation matter?
Awijen, Haithem, (2022)
-
Systematic and unsystematic determinants of sectoral risk default interconnectedness
Awijen, Haithem, (2023)
-
Awijen, Haithem, (2024)
- More ...