Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation
| Year of publication: |
2020
|
|---|---|
| Authors: | Yaakoubi, Yassine ; Soumis, François ; Lacoste-Julien, Simon |
| Published in: |
EURO journal on transportation and logistics. - Amsterdam, Niederlande : Elsevier, ISSN 2192-4384, ZDB-ID 2660486-3. - Vol. 9.2020, 4, p. 1-14
|
| Subject: | Airline crew scheduling | Column generation | Constraint aggregation | Crew pairing | Machine learning | Künstliche Intelligenz | Artificial intelligence | Personaleinsatzplanung | Crew scheduling | Fluggesellschaft | Airline | Luftverkehr | Air transport | Aggregation | Theorie | Theory | Algorithmus | Algorithm |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.1016/j.ejtl.2020.100020 [DOI] hdl:10419/325138 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Airline crew scheduling : models, algorithms, and data sets
Kasirzadeh, Atoosa, (2017)
-
Wen, Xin, (2025)
-
Ruther, Sebastian, (2017)
- More ...
-
Yaakoubi, Yassine, (2020)
-
Learning to branch for the crew pairing problem
Pereira, Pierre, (2022)
-
Towards resilience : primal large-scale re-optimization
Er Raqabi, El Mehdi, (2024)
- More ...