Machine learning in business process monitoring : a comparison of deep learning and classical approaches used for outcome prediction
Year of publication: |
2021
|
---|---|
Authors: | Kratsch, Wolfgang ; Manderscheid, Jonas Hans ; Röglinger, Maximilian ; Seyfried, Johannes |
Published in: |
Business & information systems engineering. - Atlanta, Georgia : AIS, ISSN 1867-0202, ZDB-ID 2478345-6. - Vol. 63.2021, 3, p. 261-276
|
Subject: | Predictive process monitoring | Business process management | Outcome prediction | Deep learning | Machine learning | Künstliche Intelligenz | Artificial intelligence | Prozessmanagement | Prognoseverfahren | Forecasting model | Lernen | Learning |
-
Semi-supervised discovery of DNN-based outcome predictors from scarcely-labeled process logs
Folino, Francesco, (2022)
-
Predictive end-to-end enterprise process network monitoring
Oberdorf, Felix, (2023)
-
Radišić-Aberger, Ognjen, (2024)
- More ...
-
Kratsch, Wolfgang, (2020)
-
Conceptualizing and Assessing the value of Internet of Things Solutions
Baltuttis, Dennik, (2022)
-
Prioritization of interconnected processes
Lehnert, Martin, (2018)
- More ...