Machine learning in risk measurement : Gaussian process regression for value-at-risk and expected shortfall
Year of publication: |
2019
|
---|---|
Authors: | Wilkens, Sascha |
Published in: |
Journal of risk management in financial institutions. - London : Henry Stewart Publ., ISSN 1752-8887, ZDB-ID 2416788-5. - Vol. 12.2019, 3, p. 374-383
|
Subject: | Gaussian process regression | expected shortfall | machine learning | market risk | risk measurement | value-at-risk | Risikomaß | Risk measure | Künstliche Intelligenz | Artificial intelligence | Risiko | Risk | Risikomanagement | Risk management | Theorie | Theory | Portfolio-Management | Portfolio selection | Messung | Measurement | Stochastischer Prozess | Stochastic process | Marktrisiko | Market risk | Gauß-Prozess | Gaussian process | Statistische Verteilung | Statistical distribution |
-
Lost in noise? : some thoughts on the use of machine learning in financial market risk measurement
Quell, Peter, (2023)
-
On the network topology of variance decompositions : measuring the connectedness of financial firms
Diebold, Francis X., (2014)
-
A conditional equity risk model for regulatory assessment
Floryszczak, A., (2019)
- More ...
-
„Geschützte" Aktienanleihen als Innovation im Bereich strukturierter Finanzprodukte
Wilkens, Sascha, (2002)
-
Erner, Carsten, (2004)
-
Wilkens, Sascha, (2003)
- More ...