Marginal likelihood estimation with the cross-entropy method
Year of publication: |
2015
|
---|---|
Authors: | Chan, Joshua ; Eisenstat, Eric |
Published in: |
Econometric reviews. - Philadelphia, Pa. : Taylor & Francis, ISSN 0731-1761, ZDB-ID 797463-2. - Vol. 34.2015, 1/5, p. 256-285
|
Subject: | Dynamic factor model | Importance sampling | Logit | Model selection | Probit | Time-varying parameter | vector autoregressive model | Stichprobenerhebung | Sampling | Monte-Carlo-Simulation | Monte Carlo simulation | Logit-Modell | Logit model | VAR-Modell | VAR model | Probit-Modell | Probit model | Zeitreihenanalyse | Time series analysis | Markov-Kette | Markov chain | Modellierung | Scientific modelling | Schätzung | Estimation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory |
-
Marginal Likelihood Estimation with the Cross-Entropy Method
Chan, Joshua, (2012)
-
Marginal likelihood estimation with the cross-entropy method
Chan, Joshua, (2012)
-
Estimating (Markov-switching) VAR models without Gibbs sampling : a sequential Monte Carlo approach
Bognanni, Mark, (2015)
- More ...
-
Comparing Hybrid Time-Varying Parameter VARs
Chan, Joshua, (2018)
-
Reducing Dimensions in a Large TVP-VAR
Chan, Joshua, (2018)
-
Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility
Chan, Joshua, (2018)
- More ...