Markov-switching models with unknown error distributions : identification and inference within the Bayesian framework
| Year of publication: |
2024
|
|---|---|
| Authors: | Hwu, Shih-Tang ; Kim, Chang-jin |
| Published in: |
Studies in nonlinear dynamics and econometrics : SNDE ; quarterly publ. electronically on the internet. - Berlin : De Gruyter, ISSN 1558-3708, ZDB-ID 1385261-9. - Vol. 28.2024, 2, p. 177-199
|
| Subject: | identification condition | label switching problem | Markov chain Monte Carlo | mixture of normals | semi-parametric Bayesian inference | unknown error distribution | Markov-Kette | Markov chain | Theorie | Theory | Bayes-Statistik | Bayesian inference | Monte-Carlo-Simulation | Monte Carlo simulation | Statistische Verteilung | Statistical distribution | Nichtparametrisches Verfahren | Nonparametric statistics | Statistischer Fehler | Statistical error |
-
Bayesian semiparametric GARCH Models
Zhang, Xibin, (2011)
-
Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
Shang, Han Lin, (2022)
-
A primer on Bayesian distributional regression
Kneib, Thomas, (2017)
- More ...
-
An N-state endogenous Markov-switching model with applications in macroeconomics and finance
Hwu, Shih-Tang, (2021)
-
Markov-switching models with endogenous explanatory variables II : a two-step MLE procedure
Kim, Chang-jin, (2009)
-
Dealing with endogeneity in regression models with dynamic coefficients
Kim, Chang-jin, (2010)
- More ...