Matrix gamma distributions and related stochastic processes
Year of publication: |
[2022]
|
---|---|
Authors: | Kozubowski, Tomasz J. ; Mazur, Stepan ; Podgórski, Krzysztof |
Publisher: |
Örebro, Sweden : Örebro University School of Business |
Subject: | Random matrices | singular random matrices | distribution theory | matrix-variate gamma distribution | Wishart distribution | matrix-variate Laplace distribution | infinitely divisible and stable distributions | matrix-valued Levy processes | triangular matrix-valued Rayleigh process | matrix-variate gamma process | characterization and structure for multivariate probability distributions | Statistische Verteilung | Statistical distribution | Theorie | Theory | Wahrscheinlichkeitsrechnung | Probability theory | Stochastischer Prozess | Stochastic process | Lineare Algebra | Linear algebra |
Extent: | 1 Online-Ressource (circa 47 Seiten) |
---|---|
Series: | Working paper. - Örebro, Sweden : Örebro University School of Business, ISSN 1403-0586, ZDB-ID 3076307-1. - Vol. 2022, 12 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Other identifiers: | hdl:10419/274597 [Handle] |
Classification: | C10 - Econometric and Statistical Methods: General. General ; C30 - Econometric Methods: Multiple/Simultaneous Equation Models. General ; c46 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Matrix gamma distributions and related stochastic processes
Kozubowski, Tomasz J., (2022)
-
Matrix variate generalized laplace distributions
Kozubowski, Tomasz J., (2022)
-
The method of moments for multivariate random sums
Javed, Farrukh, (2024)
- More ...
-
Matrix gamma distributions and related stochastic processes
Kozubowski, Tomasz J., (2022)
-
Multivariate generalized Laplace distribution and related random fields
Kozubowski, Tomasz J., (2013)
-
A bivariate Lévy process with negative binomial and gamma marginals
Kozubowski, Tomasz J., (2008)
- More ...