Maximum asymptotic variance of sums of finite Markov chains
An optimal bound is given for the asymptotic variance of the empirical mean n-1[summation operator]1nf(Xk), where (Xk) is a finite ergodic Markov chain and f is any bounded function defined on the state space E such that the stationary mean is a fixed number [mu]. This bound depends only on [mu], [lambda] and the endpoints of the support of f(E).
Year of publication: |
2001
|
---|---|
Authors: | León, Carlos A. |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 54.2001, 4, p. 413-415
|
Publisher: |
Elsevier |
Keywords: | Markov Chain Sample mean Asymptotic variance MCMC Perron-Frobenius eigenvalue |
Saved in:
Saved in favorites
Similar items by person
-
Extremal properties of sums of Bernoulli random variables
León, Carlos A., (2003)
-
A statistical model for random rotations
León, Carlos A., (2006)
-
El conflicto entre producción, sociedad y medio ambiente: la expansión agrícola en el sur de Salta
León, Carlos A., (1985)
- More ...