Maximum likelihood estimation for noncausal autoregressive processes
We discuss a maximum likelihood procedure for estimating parameters in possibly noncausal autoregressive processes driven by i.i.d. non-Gaussian noise. Under appropriate conditions, estimates of the parameters that are solutions to the likelihood equations exist and are asymptotically normal. The estimation procedure is illustrated with a simulation study for AR(2) processes.
Year of publication: |
1991
|
---|---|
Authors: | Breid, F. Jay ; Davis, Richard A. ; Lh, Keh-Shin ; Rosenblatt, Murray |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 36.1991, 2, p. 175-198
|
Publisher: |
Elsevier |
Keywords: | maximum likelihood estimates asymptotic normality autoregressive process nonminimum phase noncausal |
Saved in:
Saved in favorites
Similar items by person
-
Parameter estimation for some time series models without contiguity
Davis, Richard A., (1991)
-
Markov processes : structure and asymptotic behavior
Rosenblatt, Murray, (1971)
-
Rosenblatt, Murray, (1954)
- More ...