Mean-Field Multi-Agent Reinforcement Learning : A Decentralized Network Approach
Year of publication: |
[2021]
|
---|---|
Authors: | Gu, Haotian ; Guo, Xin ; Wei, Xiaoli ; Xu, Renyuan |
Publisher: |
[S.l.] : SSRN |
Subject: | Agentenbasierte Modellierung | Agent-based modeling | Theorie | Theory | Dezentralisierung | Decentralization | Lernprozess | Learning process | Lernen | Learning | Netzwerk | Network | Soziales Netzwerk | Social network | Unternehmensnetzwerk | Business network |
Extent: | 1 Online-Ressource (28 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprĂĽngliche Fassung des Dokuments June 5, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3900139 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
It's a match! : simulating compatibility-based learning in a network of networks
Schlaile, Michael, (2018)
-
Scalable reinforcement learning for multiagent networked systems
Qu, Guannan, (2022)
-
Network learning via multiagent inverse transportation problems
Xu, Susan Jia, (2018)
- More ...
-
Dynamic programming principles for mean-field controls with learning
Gu, Haotian, (2023)
-
Mean-field multiagent reinforcement learning : a decentralized network approach
Gu, Haotian, (2025)
-
Entropy Regularization for Mean Field Games with Learning
Guo, Xin, (2021)
- More ...