Measures of predictor sensitivity for order-insensitive partitioning of multiple correlation
Lindeman <italic>et al.</italic> [12] provide a unique solution to the relative importance of correlated predictors in multiple regression by averaging squared semi-partial correlations obtained for each predictor across all <italic>p</italic>! orderings. In this paper, we propose a series of predictor sensitivity statistics that complement the variance decomposition procedure advanced by Lindeman <italic>et al</italic>. [12]. First, we detail the logic of averaging over orderings as a technique of variance partitioning. Second, we assess predictors by conditional dominance analysis, a qualitative procedure designed to overcome defects in the Lindeman <italic>et al.</italic> [12] variance decomposition solution. Third, we introduce a suite of indices to assess the sensitivity of a predictor to model specification, advancing a series of sensitivity-adjusted contribution statistics that allow for more definite quantification of predictor relevance. Fourth, we describe the analytic efficiency of our proposed technique against the Budescu conditional dominance solution to the uneven contribution of predictors across all <italic>p</italic>! orderings.
Year of publication: |
2012
|
---|---|
Authors: | Zahran, Sammy ; Long, Michael A. ; Berry, Kenneth J. |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 39.2012, 1, p. 39-51
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Multivariate Tests for Correlated Data in Completely Randomized Designs
Paul W. Mielke Jr., (1999)
-
A Methodological Note on Typological Analysis in Status Consistency Research
Berry, Kenneth J., (1973)
-
Goodman and Kruskal's TAU-B Statistic
BERRY, KENNETH J., (1985)
- More ...