Measuring asymmetric stochastic cycle components in US macroeconomic time series
Year of publication: |
2005
|
---|---|
Authors: | Koopman, Siem Jan ; Lee, Kai Ming |
Publisher: |
Rotterdam [u.a.] : Tinbergen Inst. |
Subject: | Asymmetric business cycles | Unobserved Components | Nonlinear state space models | Monte Carlo likelihood | Importance sampling | Zustandsraummodell | State space model | Zeitreihenanalyse | Time series analysis | Monte-Carlo-Simulation | Monte Carlo simulation | Theorie | Theory | Konjunktur | Business cycle | Stochastischer Prozess | Stochastic process | Schätzung | Estimation | USA | United States | Stichprobenerhebung | Sampling |
-
Joint Bayesian analysis of parameters and states in nonlinear, non-Gaussian state space models
Barra, István, (2014)
-
Creal, Drew, (2008)
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2012)
- More ...
-
Measuring Asymmetric Stochastic Cycle Components in U.S. Macroeconomic Time Series
Koopman, Siem Jan, (2005)
-
Seasonality with Trend and Cycle Interactions in Unobserved Components Models
Koopman, Siem Jan, (2008)
-
Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers
Lee, Kai Ming, (2004)
- More ...