Measuring Housing Activeness from Multi-Source Big Data and Machine Learning
Year of publication: |
[2021]
|
---|---|
Authors: | Zhou, Yang ; Xue, Lirong ; Shi, Zhengyu ; Wu, Libo ; Fan, Jianqing |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Big Data | Big data |
Extent: | 1 Online-Ressource (38 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 11, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3940180 [DOI] |
Classification: | C02 - Mathematical Methods ; C53 - Forecasting and Other Model Applications ; c55 ; R21 - Housing Demand ; R31 - Housing Supply and Markets |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Nowcasting world trade with machine learning : a three-step approach
Chinn, Menzie David, (2023)
-
Swag: a wrapper method for sparse learning
Molinari, Roberto, (2020)
-
The perils of working with Big Data and a SMALL framework you can use to avoid them
Brave, Scott A., (2020)
- More ...
-
How much can machines learn finance from Chinese text data?
Zhou, Yang, (2024)
-
How Much Can Machines Learn Finance From Chinese Text Data?
Fan, Jianqing, (2021)
-
How and When are High-Frequency Stock Returns Predictable?
Aït-Sahalia, Yacine, (2022)
- More ...