Measuring stochastic dependence using [phi]-divergence
The problem of bivariate (multivariate) dependence has enjoyed the attention of researchers for over a century, since independence in the data is often a desired property. There exists a vast literature on measures of dependence, based mostly on the distance of the joint distribution of the data and the product of the marginal distributions, where the latter distribution assumes the property of independence. In this article, we explore measures of multivariate dependence based on the [phi]-divergence of the joint distribution of a random vector and the distribution that corresponds to independence of the components of the vector, the product of the marginals. Properties of these measures are also investigated and we employ and extend the axiomatic framework of Renyi [On measures of dependence, Acta Math. Acad. Sci. Hungar. 10 (1959) 441-451], in order to assert the importance of [phi]-divergence measures of dependence for a general convex function [phi] as well as special cases of [phi]. Moreover, we obtain point estimates as well as interval estimators when an elliptical distribution is used to model the data, based on [phi]-divergence via Monte Carlo methods.
Year of publication: |
2006
|
---|---|
Authors: | Micheas, Athanasios C. ; Zografos, Konstantinos |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 97.2006, 3, p. 765-784
|
Publisher: |
Elsevier |
Keywords: | Elliptical family of distributions Monte Carlo methods Multivariate dependence Renyi's axioms [phi]-divergence measures of dependence |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Cox Point Processes : Why One Realisation Is Not Enough
Micheas, Athanasios C., (2018)
-
A Bayesian Hierarchical Nonoverlapping Random Disc Growth Model
Micheas, Athanasios C., (2009)
-
Modeling shape distributions and inferences for assessing differences in shapes
Micheas, Athanasios C., (2005)
- More ...