EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search
  • Minimaxity and admissibility o...
  • More details
Cover Image

Minimaxity and admissibility of the product limit estimator

Year of publication:
1991
Authors: Phadia, E. ; Yu, Qiqing
Published in:
Annals of the Institute of Statistical Mathematics. - Springer. - Vol. 43.1991, 3, p. 579-596
Publisher: Springer
Subject: Minimaxity | censored data | admissibility | nonparametric estimation | product limit estimator
Saved in:
  • More details
Extent:
text/html
Type of publication: Article
Source:
RePEc - Research Papers in Economics
Persistent link: https://www.econbiz.de/10005184709
    • EndNote
    • BibTeX
    • Zotero, Mendeley, RefWorks, ...
    • Text
Saved in favorites
    Similar items by subject
    • Minimax confidence bound of the normal mean under an asymmetric loss function

      Xiao, Yushan, (2005)

    • Sensitivity of minimaxity and admissibility in the estimation of a positive normal mean

      Maruyama, Yuzo, (2005)

    • A unified approach to decision-theoretic properties of the MLEs for the mean directions of several Langevin distributions

      Kanika, (2015)

    • More ...
    Similar items by person
    • ADMISSIBILITY OF THE BEST INVARIANT ESTIMATOR OF A DISTRIBUTION FUNCTION

      Yu, Qiqing, (1989)

    • ADMISSIBILITY OF THE EMPIRICAL DISTRIBUTION FUNCTION IN THE INVARIANT PROBLEM

      Yu, Qiqing, (1989)

    • MINIMAXITY OF THE EMPIRICAL DISTRIBUTION FUNCTION IN DISCRETE INVARIANT ESTIMATION OF A DISTRIBUTION FUNCTION

      Yu, Qiqing, (1992)

    • More ...
    A service of the
    zbw
    • Sitemap
    • Plain language
    • Accessibility
    • Contact us
    • Imprint
    • Privacy

    Loading...