Mixed-frequency machine learning : nowcasting and backcasting weekly initial claims with daily internet search volume data
Year of publication: |
2023
|
---|---|
Authors: | Borup, Daniel ; Rapach, David E. ; Montes Schütte, Erik Christian |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 39.2023, 3, p. 1122-1144
|
Subject: | Elastic net | Internet search | LASSO | Mixed-frequency data | Neural network | Unemployment insurance | Variable importance | Internet | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Arbeitslosenversicherung | Neuronale Netze | Neural networks | Theorie | Theory | Arbeitsuche | Job search | Schätzung | Estimation |
-
Now- and backcasting initial claims with high-dimensional daily internet search-volume data
Borup, Daniel, (2021)
-
Machine learning techniques applied to US army and navy data
Kim, Jong-Min, (2020)
-
Macroeconomic forecasting using factor models and machine learning : an application to Japan
Maehashi, Kohei, (2020)
- More ...
-
The Anatomy of Out-of-Sample Forecasting Accuracy
Borup, Daniel, (2022)
-
Now- and backcasting initial claims with high-dimensional daily internet search-volume data
Borup, Daniel, (2021)
-
The anatomy of out-of-sample forecasting accuracy
Borup, Daniel, (2022)
- More ...