Mixture models, latent variables and partitioned importance sampling.
| Year of publication: |
2004
|
|---|---|
| Authors: | Casella, George ; Robert, Christian P. ; Wells, Martin T. |
| Institutions: | Université Paris-Dauphine |
| Subject: | Monte Carlo methods | Bayes estimation | Partition decomposition | Posterior probabilities | Gibbs sampling |
| Extent: | application/pdf |
|---|---|
| Series: | |
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Published in Statistical Methodology (2004) v.1, p.1-18 |
| Classification: | C11 - Bayesian Analysis ; C15 - Statistical Simulation Methods; Monte Carlo Methods |
| Source: |
-
Mixture models, latent variables and partitioned importance sampling
Casella, George, (2004)
-
Ensemble MCMC sampling for robust Bayesian inference
Böhl, Gregor, (2022)
-
Active, or passive? : revisiting the role of fiscal policy in the great inflation
Ettmeier, Stephanie, (2020)
- More ...
-
Explaining the Perfect Sampler.
Casella, George, (2001)
-
Mixture models, latent variables and partitioned importance sampling
Casella, George, (2000)
-
Mixture models, latent variables and partitioned importance sampling
Casella, George, (2004)
- More ...