Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors
Year of publication: |
2022
|
---|---|
Authors: | Makieła, Kamil ; Mazur, Błażej |
Published in: |
Journal of productivity analysis : an official journal of the International Society for Efficiency and Productivity Analysis. - New York, NY : Springer Science+Business Media LLC, ISSN 1573-0441, ZDB-ID 1478730-1. - Vol. 58.2022, 1, p. 35-54
|
Subject: | Bayesian model averaging | Density estimation | Efficiency analysis | Stochastic frontier model | Technische Effizienz | Technical efficiency | Bayes-Statistik | Bayesian inference | Data-Envelopment-Analyse | Data envelopment analysis | Produktionsfunktion | Production function | Effizienz | Efficiency | Stochastischer Prozess | Stochastic process | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Statistischer Fehler | Statistical error |
-
Preciado Arreola, José Luis, (2020)
-
Bridging the divide? : Bayesian artificial neural networks for frontier efficiency analysis
Tsionas, Efthymios G., (2021)
-
Stochastic non-smooth envelopment of data for multi-dimensional output
Schaefer, Julia, (2018)
- More ...
-
Bayesian model averaging and prior sensitivity in stochastic frontier analysis
Makieła, Kamil, (2020)
-
Bayesian model averaging and prior sensitivity in stochastic frontier analysis
Makieła, Kamil, (2020)
-
Probabilistic predictive analysis of business cyclefluctuations in Polish economy
Mazur, Błażej, (2017)
- More ...