Modeling and forecasting US presidential election using learning algorithms
Year of publication: |
September 2018
|
---|---|
Authors: | Zolghadr, Mohammad ; Niaki, Seyed Armin Akhavan ; Niaki, S. T. A. |
Published in: |
Journal of industrial engineering international. - Heidelberg : SpringerOpen, ISSN 2251-712X, ZDB-ID 2664907-X. - Vol. 14.2018, 3, p. 491-500
|
Subject: | Presidential election | Forecasting | Artificial neural network | Support vector regression | Linear regression | Prognoseverfahren | Forecasting model | Präsidentschaftswahl | Neuronale Netze | Neural networks | Regressionsanalyse | Regression analysis | USA | United States | Wahlverhalten | Voting behaviour | Theorie | Theory | Algorithmus | Algorithm | Mustererkennung | Pattern recognition |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1007/s40092-017-0238-2 [DOI] hdl:10419/195619 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Azadeh, Mohammad Ali, (2015)
-
Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms
Julio, Nikolas, (2016)
-
Hong, Wei-Chiang, (2007)
- More ...
-
Modeling and forecasting US presidential election using learning algorithms
Zolghadr, Mohammad, (2018)
-
Dynamic incentives for sustainable contract farming
Zhang, Wei, (2023)
-
Arabzadeh, Vida, (2018)
- More ...