Modeling and qualitative analysis of continuous-time neural networks under pure structural variations
A qualitative analysis is developed for continuous-time neural networks subjected to random pure structural variations. Simple algebraic conditions are established for both structural exponential stability of x = 0 of the neural network and for estimates of its domain of attraction. Bounds on motions of the neural network in a forced regime are provided. They do not require any information about its actual structure, which can be completely unknown and may vary unpredictably.