Modeling county-level spatio-temporal mortality rates using dynamic linear models
Year of publication: |
2020
|
---|---|
Authors: | Gibbs, Zoe ; Groendyke, Chris ; Hartman, Brian ; Richardson, Robert |
Subject: | mortality improvement | Bayesian modeling | spatial generalized linear model | conditional auto-regressive priors | Sterblichkeit | Mortality | Theorie | Theory | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model | Schätzung | Estimation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks8040117 [DOI] hdl:10419/258070 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Time-varying combinations of Bayesian dynamic models and equity momentum strategies
Basturk, Nalan, (2016)
-
Cash flow news and stock price dynamics
Pettenuzzo, Davide, (2019)
-
Learning forecast-efficient yield curve factor decompositions with neural networks
Kauffmann, Piero C., (2022)
- More ...
-
Modeling county-level spatio-temporal mortality rates using dynamic linear models
Gibbs, Zoe, (2020)
-
Hartman, Brian, (2020)
-
A Multivariate Spatiotemporal Model for County Level Mortality Data in the Contiguous United States
Shull, Michael, (2022)
- More ...