Modeling high-frequency financial data using R and Stan : a bayesian autoregressive conditional duration approach
Year of publication: |
2024
|
---|---|
Authors: | Tabash, Mosab I. ; Navas, T. Muhammed ; Thayyib, P. V. ; Farhin, Shazia ; Khan, Athar Ali ; Hannoon, Azzam |
Published in: |
Journal of open innovation : technology, market, and complexity. - Basel : MDPI, ISSN 2199-8531, ZDB-ID 2832108-X. - Vol. 10.2024, 2, Art.-No. 100249, p. 1-16
|
Subject: | Bayesian Inference | Birnbaum-Saunders | BSACD | Generalized Gamma ACD | GGACD | High-frequency trading | Log Weibull ACD | Markov Chain Monte Carlo | MCMC | Volatility modelling | WACD | Weibull ACD | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Börsenkurs | Share price | Monte-Carlo-Simulation | Monte Carlo simulation | Schätzung | Estimation | Elektronisches Handelssystem | Electronic trading | Statistische Bestandsanalyse | Duration analysis | Statistische Verteilung | Statistical distribution | Schätztheorie | Estimation theory |
-
Volatility estimation using a rational GARCH model
Takaishi, Tetsuya, (2018)
-
Bayesian approach to Lorenz curve using time series grouped data
Kobayashi, Genya, (2022)
-
Lengua Lafosse, Patricia, (2018)
- More ...
-
Tabash, Mosab I., (2018)
-
The role of tourism sector in economic growth : an empirical evidence from Palestine
Tabash, Mosab I., (2017)
-
Pro-poor and inclusive growth in West Africa
Adeosun, Opeoluwa Adeniyi, (2021)
- More ...