Modeling tail risks of inflation using unobserved component quantile regressions
Year of publication: |
2022
|
---|---|
Authors: | Pfarrhofer, Michael |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 143.2022, p. 1-19
|
Subject: | Stochastic volatility | Predictive inference | State space models | Time-varying parameters | Zustandsraummodell | State space model | Volatilität | Volatility | Theorie | Theory | Zeitreihenanalyse | Time series analysis | Stochastischer Prozess | Stochastic process | Prognoseverfahren | Forecasting model | Inflation | Schätzung | Estimation | Kapitaleinkommen | Capital income | ARCH-Modell | ARCH model | Regressionsanalyse | Regression analysis |
-
Stochastic volatility models with ARMA innovations : an application to G7 inflation forecasts
Zhang, Bo, (2020)
-
Stochastic volatility models with ARMA innovations : an application to G7 inflation forecasts
Zhang, Bo, (2018)
-
Gagliardini, Patrick, (2017)
- More ...
-
Implications of macroeconomic volatility in the Euro area
Hauzenberger, Niko, (2018)
-
Stochastic model specification in Markov switching vector error correction models
Huber, Florian, (2018)
-
Fischer, Manfred M., (2018)
- More ...