Modelling Tinnitus Functional Index reduction using supervised machine learning algorithms
Edmund Fosu Agyemang
Statistics in Transition new series vol.25, 2024, 4, Modelling Tinnitus Functional Index reduction using supervised machine learning algorithms, DOI https://doi.org/10.59139/stattrans-2024-003, Edmund Fosu Agyemang
Year of publication: |
2024
|
---|---|
Authors: | Agyemang, Edmund Fosu |
Published in: |
Statistics in transition : an international journal of the Polish Statistical Association and Statistics Poland. - Warszawa : GUS, ISSN 2450-0291, ZDB-ID 2235641-1. - Vol. 25.2024, 4, p. 51-77
|
Subject: | Tinnitus | K-Nearest Neighbor regression | Ridge regression | Lasso regression | multiple linear regression | Regressionsanalyse | Regression analysis | Schätztheorie | Estimation theory | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm |
Saved in:
freely available
Saved in favorites
Similar items by subject
-
How to predict the performance of NBA draft prospects
Czasonis, Megan, (2023)
-
Algorithm is experiment : machine learning, market design, and policy eligibility rules
Narita, Yusuke, (2021)
-
Predicting customer deposits with machine learning algorithms : evidence from Tunisia
Gafrej, Oussama, (2024)
- More ...