Monte Carlo maximum likelihood estimation for generalized long-memory time series models
Year of publication: |
2016
|
---|---|
Authors: | Mesters, G. ; Koopman, Siem Jan ; Ooms, Marius |
Published in: |
Econometric reviews. - Philadelphia, Pa. : Taylor & Francis, ISSN 0731-1761, ZDB-ID 797463-2. - Vol. 35.2016, 1/4, p. 659-687
|
Subject: | Forecasting | Fractional integration | Importance sampling | Kalman filter | Latent factors | Stochastic volatility | Zeitreihenanalyse | Time series analysis | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Monte-Carlo-Simulation | Monte Carlo simulation | Zustandsraummodell | State space model | Schätztheorie | Estimation theory | Prognoseverfahren | Forecasting model |
-
Likelihood-based analysis for dynamic factor models
Jungbacker, Borus, (2008)
-
Monte Carlo maximum likelihood estimation for generalized long-memory time series models
Mesters, G., (2011)
-
Trend-cycle decomposition and forecasting using Bayesian multivariate unobserved components
Jahan-Parvar, Mohammad R., (2024)
- More ...
-
Monte Carlo maximum likelihood estimation for generalized long-memory time series models
Mesters, G., (2011)
-
Mesters, Geert, (2014)
-
Empirical Bayes Methods for Dynamic Factor Models
Koopman, Siem Jan, (2014)
- More ...