Multi-factor RFG-LSTM algorithm for stock sequence predicting
| Year of publication: |
2021
|
|---|---|
| Authors: | Su, Zhi ; Xie, Heliang ; Han, Lu |
| Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 57.2021, 4, p. 1041-1058
|
| Subject: | Long short-term memory | Rectified forgetting gate | Multi-factor model portfolio | Recurrent neural network | Theorie | Theory | Neuronale Netze | Neural networks | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model | Algorithmus | Algorithm | Aktienmarkt | Stock market |
-
Michańków, Jakub, (2023)
-
Ensembled LSTM with walk forward optimization in algorithmic trading
Chojnacki, Karol, (2023)
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
- More ...
-
Chinese online unemployment-related searches and macroeconomic indicators
Su, Zhi, (2014)
-
Uncertainty-driven oil volatility risk premium and international stock market volatility forecasting
Fang, Tong, (2023)
-
Su, Zhi, (2021)
- More ...