Multiobjective interacting particle algorithm for global optimization
Year of publication: |
2014
|
---|---|
Authors: | Mete, Huseyin Onur ; Zabinsky, Zelda B. |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 26.2014, 3, p. 500-513
|
Subject: | multiobjective optimization | random search algorithms | global optimization | simulated annealing | Markov chain Monte Carlo sampling | Pareto optimality | efficient frontier | population-based algorithms | Pattern Hit-and-Run | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Markov-Kette | Markov chain | Stichprobenerhebung | Sampling | Pareto-Optimum | Pareto efficiency | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Approximation methods for multiobjective optimization problems : a survey
Herzel, Arne, (2021)
-
Tsionas, Efthymios G., (2018)
-
Approximate Pareto sets of minimal size for multi-objective optimization problems
Bazgan, Cristina, (2015)
- More ...
-
Stochastic optimization of medical supply location and distribution in disaster management
Mete, Huseyin Onur, (2010)
-
Pattern Hit-and-Run for sampling efficiently on polytopes
Mete, Huseyin Onur, (2012)
-
Pattern discrete and mixed Hit-and-Run for global optimization
Mete, Huseyin Onur, (2011)
- More ...