Near-optimal no-regret algorithms for zero-sum games
Year of publication: |
2015
|
---|---|
Authors: | Daskalákis, Constantínos ; Deckelbaum, Alan ; Kim, Anthony |
Published in: |
Games and economic behavior. - Amsterdam : Elsevier, ISSN 0899-8256, ZDB-ID 1002944-8. - Vol. 92.2015, p. 327-348
|
Subject: | Zero-sum games | Repeated games | Learning | No-regret dynamics | Spieltheorie | Game theory | Wiederholte Spiele | Lernprozess | Learning process | Algorithmus | Algorithm |
-
Estimating depth of reasoning in a repeated guessing game with no feedback
Runco, Mariano, (2013)
-
Dynamics of market making algorithms in dealer markets : learning and tacit collusion
Cont, Rama, (2024)
-
When is tit-for-tat unbeatable?
Dürsch, Peter, (2014)
- More ...
-
Strong duality for a multiple-good monopolist
Daskalákis, Constantínos, (2017)
-
Collusion, efficiency, and dominant strategies
Deckelbaum, Alan, (2017)
-
A note on strictly competitive games
Adler, Ilan, (2009)
- More ...