Neural networks and arbitrage in the VIX : a deep learning approach for the VIX
Year of publication: |
2020
|
---|---|
Authors: | Osterrieder, Joerg ; Kucharczyk, Daniel ; Rudolf, Silas ; Wittwer, Daniel |
Published in: |
Digital finance : smart data analytics, investment innovation, and financial technology. - [Cham] : Springer Nature Switzerland AG, ISSN 2524-6186, ZDB-ID 2947479-6. - Vol. 2.2020, 1/2, p. 97-115
|
Subject: | VIX | SPX | Neural network | LSTM | Deep learning | Arbitrage | Market manipulation | Random forests | Neuronale Netze | Neural networks | Volatilität | Volatility | Theorie | Theory | Lernprozess | Learning process | Börsenkurs | Share price | Künstliche Intelligenz | Artificial intelligence |
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2017)
-
Multistep forecast of the implied volatility surface using deep learning
Medvedev, Nikita, (2022)
- More ...
-
Neural Networks and Arbitrage in the VIX – A Deep Learning Approach for the VIX
Kucharczyk, Daniel, (2019)
-
Neural Networks and Arbitrage in the VIX
Osterrieder, Joerg, (2020)
-
Pattern Learning Via Artificial Neural Networks for Financial Market Predictions
Gabler, Andreas, (2018)
- More ...