Neural networks for partially linear quantile regression
Year of publication: |
2024
|
---|---|
Authors: | Zhong, Qixian ; Wang, Jane-Ling |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 42.2024, 2, p. 603-614
|
Subject: | Curse of dimensionality | Deep learning | Interpretability | Semiparametric regression | Stochastic gradient descent | Neuronale Netze | Neural networks | Regressionsanalyse | Regression analysis | Nichtparametrisches Verfahren | Nonparametric statistics | Schätztheorie | Estimation theory | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process |
-
Takahashi, Akihiko, (2021)
-
Nonparametric nonlinear regression using polynomial and neural approximators: a numerical comparison
Alessandri, A., (2009)
-
Preciado Arreola, José Luis, (2020)
- More ...
-
Dynamic modeling for multivariate functional and longitudinal data
Hao, Siteng, (2024)
-
Estimating IFRA and NBU survival curves based on censored data
Wang, Jane-Ling, (1987)
-
OPTIMAL ESTIMATIONS OF STARSHAPED DISTRIBUTION FUNCTIONS
Wang, Jane-Ling, (1988)
- More ...