Why Newton’s method is hard for travelling waves: Small denominators, KAM theory, Arnold’s linear Fourier problem, non-uniqueness, constraints and erratic failure
Year of publication: |
2007
|
---|---|
Authors: | Boyd, John P. |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 74.2007, 2, p. 72-81
|
Publisher: |
Elsevier |
Subject: | Nonlinear equations | Bifurcation | Small denominators | Fifth-order Korteweg–deVries equation |
-
Contiuum of Zero Points of a Mapping on a Compact Convex Set
Talman, Dolf, (2001)
-
Talman, Dolf, (1990)
-
Chuangyin, D., (1990)
- More ...
-
Measuring Centrality and Power Recursively in the World City Network: A Reply to Neal
Boyd, John P., (2013)
-
Weakly nonlinear wavepackets in the Korteweg–de Vries equation: the KdV/NLS connection
Boyd, John P., (2001)
-
The cnoidal wave/corner wave/breaking wave scenario: A one-sided infinite-dimension bifurcation
Boyd, John P., (2005)
- More ...