Newton-Raphson emulation network for highly efficient computation of numerous implied volatilities
Year of publication: |
2022
|
---|---|
Authors: | Lee, Geon ; Kim, Tae-Kyoung ; Kim, Hyun-Gyoon ; Huh, Jeonggyu |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 12, Art.-No. 616, p. 1-8
|
Subject: | graphics processing unit (GPU) accelerated computing | implied volatility | Newton-Raphson method | PyTorch | TensorRT | Volatilität | Volatility | Optionspreistheorie | Option pricing theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15120616 [DOI] hdl:10419/275093 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Newton-Raphson emulation network for highly efficient computation of numerous implied volatilities
Lee, Geon, (2022)
-
Parallel architecture of CNN-bidirectional LSTMs for implied volatility forecast
Choi, Ji-Eun, (2022)
-
Financial volatility modeling with option-implied information and important macro-factors
Yfanti, Stavroula, (2022)
- More ...
-
Newton-Raphson emulation network for highly efficient computation of numerous implied volatilities
Lee, Geon, (2022)
-
Variance and Volatility Swaps and Options Under the Exponential Fractional Ornstein-Uhlenbeck Model
Kim, Hyun-Gyoon, (2023)
-
Fractional stochastic volatility correction to CEV implied volatility
Kim, Hyun-Gyoon, (2021)
- More ...