Noise-robust sampling for collaborative metric learning
Year of publication: |
2022
|
---|---|
Authors: | Matsui, Ryo ; Yaginuma, Suguru ; Naito, Taketo ; Nakata, Kazuhide |
Published in: |
The review of socionetwork strategies. - Tokyo : Springer Japan, ISSN 1867-3236, ZDB-ID 2471097-0. - Vol. 16.2022, 2, p. 307-332
|
Subject: | Collaborative filtering | Implicit feedback | Machine learning | Metric learning | Recommendation systems | Künstliche Intelligenz | Artificial intelligence | Personalisierung | Personalization | Lernen | Learning | Lernende Organisation | Learning organization | Stichprobenerhebung | Sampling | Lernprozess | Learning process | E-Learning | E-learning |
-
Learning analytics in informal, participatory collaborative learning
Cheong, Michelle L. F., (2023)
-
Exploring the multi-dimensionality of authenticity in dining experiences using online reviews
Le, Truc H., (2021)
-
Recent techniques and algorithms for cryptocurrencies' price prediction : a literature review
Haxhimehmeti, Haris, (2025)
- More ...
-
Robust Tracking Error Optimization Problems by Second-Order Cone Programming
Inaba, Hiroki, (2005)
-
An Extension of a Minimax Approach to Multiple Classification
Kitahara, Tomonari, (2007)
-
SDPA Project: Solving Large-Scale Semidefinite Programs
Fujisawa, Katsuki, (2007)
- More ...