Noise-robust sampling for collaborative metric learning
| Year of publication: |
2022
|
|---|---|
| Authors: | Matsui, Ryo ; Yaginuma, Suguru ; Naito, Taketo ; Nakata, Kazuhide |
| Published in: |
The review of socionetwork strategies. - Tokyo : Springer Japan, ISSN 1867-3236, ZDB-ID 2471097-0. - Vol. 16.2022, 2, p. 307-332
|
| Subject: | Collaborative filtering | Implicit feedback | Machine learning | Metric learning | Recommendation systems | Künstliche Intelligenz | Artificial intelligence | Personalisierung | Personalization | Lernen | Learning | Lernende Organisation | Learning organization | Stichprobenerhebung | Sampling | Lernprozess | Learning process | E-Learning | E-learning |
-
Exploring the multi-dimensionality of authenticity in dining experiences using online reviews
Le, Truc H., (2021)
-
Learning analytics in informal, participatory collaborative learning
Cheong, Michelle L. F., (2023)
-
Recent techniques and algorithms for cryptocurrencies' price prediction : a literature review
Haxhimehmeti, Haris, (2025)
- More ...
-
Seasonal inventory management model for raw materials in steel industry
Kawakami, Kosuke, (2021)
-
Trend analysis with interpretability and cold-start problems for recommender systems
Hara, Tomofumi, (2024)
-
Keyword-level Bayesian online bid optimization for sponsored search advertising
Majima, Kaito, (2024)
- More ...