Non-linear missing data imputation for healthcare data via index-aware autoencoders
Year of publication: |
2022
|
---|---|
Authors: | Kabir, Sadaf ; Farrokhvar, Leily Kamali |
Published in: |
Health care management science : a new journal serving the international health care management community. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9389, ZDB-ID 2006272-2. - Vol. 25.2022, 3, p. 484-497
|
Subject: | Healthcare data | Index-aware autoencoders | Machine learning | Missing data imputation | Non-linear feature imputation | Künstliche Intelligenz | Artificial intelligence | Fehlende Daten | Missing data | Datenerhebung | Data collection | Datenqualität | Data quality | Gesundheitswesen | Health care system | Statistische Methode | Statistical method | Gesundheitsversorgung | Health care |
-
Forecasting mortality using imputed data : the case of Taiwan
Luo, Sheng-Feng, (2016)
-
Imputation of numerical data under edit restrictions : the vertices approach
Waal, Ton de, (2017)
-
Gorišek, Aleš, (2017)
- More ...
-
Main contributing factors and the heuristic approach for assessing risk at mass gatherings
Torkjazi, Mohammadreza, (2022)
-
Farrokhvar, Leily, (2017)
-
Farrokhvar, Leily, (2017)
- More ...