Nonlinear State-Space Models for Microeconometric Panel Data
In applied microeconometric panel data analyses, time-constant random effects and first-order Markov chains are the most prevalent structures to account for intertemporal correlations in limited dependent variable models. An example from health economics shows that the addition of a simple autoregressive error terms leads to a more plausible and parsimonious model which also captures the dynamic features better. The computational problems encountered in the estimation of such models - and a broader class formulated in the framework of nonlinear state space models - hampers their widespread use. This paper discusses the application of different nonlinear filtering approaches developed in the time-series literature to these models and suggests that a straightforward algorithm based on sequential Gaussian quadrature can be expected to perform well in this setting. This conjecture is impressively confirmed by an extensive analysis of the example application.
C15 - Statistical Simulation Methods; Monte Carlo Methods ; C23 - Models with Panel Data ; C35 - Discrete Regression and Qualitative Choice Models ; I10 - Health. General